Populations in Ecosystems - Mark Scheme

Q1.

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	correct calculation of numerator	(1)	Example of calculation: $(N(N-1) = 427 \times 426 = 181 \ 902)$ $\div (\Sigma n(n-1) =) 52 \ 320)$	
	correct calculation of denominator	(1)	= 3.48 ;	
	correct calculation of diversity index / correctly plotted on the graph	(1)	Allow full marks for correct answer with no working	(3)

Question Number	Acceptable Answer		Additional Guidance	Mark
(ii)	An explanation that makes reference to the following points: • succession is the sequence of { species / communities } replacing each other with time • dune 4 is older than dune 1 • no species of plant inhabits all 4 dunes /example from table quoted to show one species inhabiting no more than 3 dunes • plant diversity increases with time • description of increasing diversity index from dune 1 to dune 4	(1) (1) (1) (1)	e.g. species G only found on dunes 3 and 4	(5)

Question		Additional	
Number	Answer	Guidance	Mark
(i)	Effects on plants: 1. { loss / eq } of (existing) species / extinction; 2. idea of changes in distribution (of plants / species); 3. idea of changes in {numbers / size / growth / eq } (of plants / species);		
	Explanations (max 3): 4. idea that there will be changes in rainfall patterns;	NB any link to an affect must be	
	idea of a change in growing seasons;	correct 4 ACCEPT droughts	
	6. idea that temperature may become too hot for some species OR credit a link made between temperature and enzyme activity; 7. idea of increased carbon dioxide results in more {photosynthesis / GPP / NPP / biomass / eq};	5 ACCEPT flowering times	
	8. idea of fall in pH in {oceans / rivers / eq};		(4)

Question Number	Answer	Additional Guidance	Mark
(ii)		ACCEPT converse for increase in plant {number / size / eq}	
	 idea of reduction of {herbivore / primary consumer}; 	1 ACCEPT idea of loss of animals because of reduction in food	
	 idea that this would result in a reduction of {predator / secondary consumer / tertiary consumers}; 	supply 2 ACCEPT idea of loss of animals that feed on the herbivores	
	 idea that a change in {distribution / numbers / types / eq} of plants could result in a change in distribution of {herbivores / eq}; 		
	 idea of loss of {habitat / eq} decreasing {breeding rate / numbers / eq }; 	4 ACCEPT named example e.g. nesting place	
	 idea of loss of {shelter / camouflage / eq} provides more food for predators so they would increase in {size / number}; 		(3)

Question Number	Answer	Additional Guidance	Mark
(a)	1. idea that as the {distance from the front edge of the glacier / time} increases, the {complexity / biodiversity / size / eq } of the organisms increases;	ACCEPT idea that climax community only reached at distance from glacier edge	
	reference to (primary) succession ;	2. NOT secondary succession	
	3. idea that {algae / lichens / pioneer species} are (the first) organisms to colonise bare rock / eq;		
	4. idea that {algae / lichen / pioneer species} improve conditions for plants ;	4. including e.g. change rock into soil / increase humus content of soil / increase water content 5. e.g. newer species outcompete previous species	
	 idea of competition (limiting species present); 	outcompete previous species	(3)

Question Number	Answer	Additional Guidance	Mark
(b)(i)	 the {role / interaction / eq} of an { Epilobium latifolium / organism / species} within its { ecosystem / habitat / environment }; 	1. IGNORE community	
	 (Epilobium latifolium) is a producer; 	3. NOT prey	
	 idea that Epilobium latifolium provides {food / energy} for other organisms (herbivores / primary consumers / decomposers); 	4. IGNORE food in soil ACCEPT adds organic matter, humus	
	idea that <i>Epilobium latifolium</i> improves soil e.g. holds soil structure together, increases nutrients;		
	 idea that Epilobium latifolium provides {shelter / (micro) habitat} for organisms; 	5. ACCEPT named organism e.g. insects	(3)

Question Number	Answer	Additional Guidance	Mark
(b)(ii)	 idea of using a transect (from front edge of glacier); 		
	 credit method of sampling (along transect); 	e.g. clumps touching transect, quadrat (on transect), number of plants along perpendicular	
	 credit appropriate method of selecting sample sites (along transect); 	e.g. set distance, regular, systematic, flip-flop quadrats NOT random	
	4. description of estimate of abundance e.g. number of plants, percentage cover;		
	idea of using more than one transect;	5. IGNORE references to repeating investigation	
	 credit appropriate method of recording quantitative data; 	6. e.g. tally chart, table, graph	(4)

Question Number	Answer	Additional Guidance	Mark
(b)(iii)	credit appropriate named abiotic factor;	1. e.g. light, soil pH, water content, mineral content, temperature, salinity, wind IGNORE CO ₂ , O ₂ , rainfall, humidity	
	credit appropriate method of measurement of factor;	2.CE applied e.g. light {probe / sensor / meter / data logger}, {water gauge / drying out soil samples}	
	3. credit appropriate description of where reading should be taken;	3. CE applied e.g. reading taken at height of plant, soil sample around roots, quadrat	
	4. idea of taking several readings and getting an average / eq;		(3)