Populations in Ecosystems - Mark Scheme ## Q1. | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|--|-----|--|------| | (i) | correct calculation of
numerator | (1) | Example of calculation:
$(N(N-1) = 427 \times 426 = 181 \ 902)$
$\div (\Sigma n(n-1) =) 52 \ 320)$ | | | | correct calculation of
denominator | (1) | = 3.48 ; | | | | correct calculation of
diversity index /
correctly plotted on
the graph | (1) | Allow full marks for correct answer with no working | (3) | | Question
Number | Acceptable Answer | | Additional
Guidance | Mark | |--------------------|--|--------------------------|--|------| | (ii) | An explanation that makes reference to the following points: • succession is the sequence of { species / communities } replacing each other with time • dune 4 is older than dune 1 • no species of plant inhabits all 4 dunes /example from table quoted to show one species inhabiting no more than 3 dunes • plant diversity increases with time • description of increasing diversity index from dune 1 to dune 4 | (1)
(1)
(1)
(1) | e.g. species
G only
found on
dunes 3
and 4 | (5) | | Question | | Additional | | |----------|---|--|------| | Number | Answer | Guidance | Mark | | (i) | Effects on plants: 1. { loss / eq } of (existing) species / extinction; 2. idea of changes in distribution (of plants / species); 3. idea of changes in {numbers / size / growth / eq } (of plants / species); | | | | | Explanations (max 3): 4. idea that there will be changes in rainfall patterns; | NB any link
to an affect
must be | | | | idea of a change in growing seasons; | correct 4 ACCEPT droughts | | | | 6. idea that temperature may become too hot for some species OR credit a link made between temperature and enzyme activity; 7. idea of increased carbon dioxide results in more {photosynthesis / GPP / NPP / biomass / eq}; | 5 ACCEPT flowering times | | | | 8. idea of fall in pH in {oceans / rivers / eq}; | | (4) | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|--|------| | (ii) | | ACCEPT converse
for increase in plant
{number / size /
eq} | | | | idea of reduction of
{herbivore / primary
consumer}; | 1 ACCEPT idea of loss of animals because of reduction in food | | | | idea that this would
result in a reduction of
{predator / secondary
consumer / tertiary
consumers}; | supply 2 ACCEPT idea of loss of animals that feed on the herbivores | | | | idea that a change in
{distribution / numbers /
types / eq} of plants
could result in a change
in distribution of
{herbivores / eq}; | | | | | idea of loss of {habitat /
eq} decreasing
{breeding rate /
numbers / eq }; | 4 ACCEPT named example e.g. nesting place | | | | idea of loss of {shelter /
camouflage / eq}
provides more food for
predators so they would
increase in {size /
number}; | | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (a) | 1. idea that as the {distance from the front edge of the glacier / time} increases, the {complexity / biodiversity / size / eq } of the organisms increases; | ACCEPT idea that climax community only reached at distance from glacier edge | | | | reference to (primary) succession ; | 2. NOT secondary succession | | | | 3. idea that {algae /
lichens / pioneer
species} are (the first)
organisms to colonise
bare rock / eq; | | | | | 4. idea that {algae /
lichen / pioneer species}
improve conditions for
plants ; | 4. including e.g. change rock into soil / increase humus content of soil / increase water content 5. e.g. newer species outcompete previous species | | | | idea of competition
(limiting species
present); | outcompete previous species | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (b)(i) | the {role / interaction / eq} of
an { Epilobium latifolium /
organism / species} within its
{ ecosystem / habitat /
environment }; | 1. IGNORE community | | | | (Epilobium latifolium) is a
producer; | 3. NOT prey | | | | idea that Epilobium latifolium
provides {food / energy} for other
organisms (herbivores / primary
consumers / decomposers); | 4. IGNORE food in soil
ACCEPT adds organic
matter, humus | | | | idea that <i>Epilobium latifolium</i> improves soil e.g. holds soil structure together, increases nutrients; | | | | | idea that Epilobium latifolium provides {shelter / (micro) habitat} for organisms; | 5. ACCEPT named organism e.g. insects | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (b)(ii) | idea of using a
transect (from front
edge of glacier); | | | | | credit method of
sampling (along
transect); | e.g. clumps touching transect,
quadrat (on transect),
number of plants along
perpendicular | | | | credit appropriate
method of selecting
sample sites (along
transect); | e.g. set distance, regular,
systematic, flip-flop quadrats
NOT random | | | | 4. description of estimate of abundance e.g. number of plants, percentage cover; | | | | | idea of using more
than one transect; | 5. IGNORE references to repeating investigation | | | | credit appropriate
method of recording
quantitative data; | 6. e.g. tally chart, table, graph | (4) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (b)(iii) | credit appropriate named abiotic factor; | 1. e.g. light, soil pH, water content, mineral content, temperature, salinity, wind IGNORE CO ₂ , O ₂ , rainfall, humidity | | | | credit appropriate method of measurement of factor; | 2.CE applied e.g. light {probe / sensor / meter / data logger}, {water gauge / drying out soil samples} | | | | 3. credit appropriate description of where reading should be taken; | 3. CE applied e.g. reading taken at height of plant, soil sample around roots, quadrat | | | | 4. idea of taking
several readings
and getting an
average / eq; | | (3) |